首页> 外文OA文献 >Deep Classifiers-Based License Plate Detection, Localization and Recognition on GPU-Powered Mobile Platform
【2h】

Deep Classifiers-Based License Plate Detection, Localization and Recognition on GPU-Powered Mobile Platform

机译:在基于GPU的移动平台上基于深度分类器的车牌检测,定位和识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The realization of a deep neural architecture on a mobile platform is challenging, but can open up a number of possibilities for visual analysis applications. A neural network can be realized on a mobile platform by exploiting the computational power of the embedded GPU and simplifying the flow of a neural architecture trained on the desktop workstation or a GPU server. This paper presents an embedded platform-based Italian license plate detection and recognition system using deep neural classifiers. In this work, trained parameters of a highly precise automatic license plate recognition (ALPR) system are imported and used to replicate the same neural classifiers on a Nvidia Shield K1 tablet. A CUDA-based framework is used to realize these neural networks. The flow of the trained architecture is simplified to perform the license plate recognition in real-time. Results show that the tasks of plate and character detection and localization can be performed in real-time on a mobile platform by simplifying the flow of the trained architecture. However, the accuracy of the simplified architecture would be decreased accordingly.
机译:在移动平台上实现深度神经体系结构具有挑战性,但可以为可视化分析应用程序打开许多可能性。通过利用嵌入式GPU的计算能力并简化在台式工作站或GPU服务器上训练的神经体系结构的流程,可以在移动平台上实现神经网络。本文提出了一种使用深度神经分类器的基于嵌入式平台的意大利车牌检测和识别系统。在这项工作中,将导入高精度自动车牌识别(ALPR)系统的训练参数,并将其用于在Nvidia Shield K1平板电脑上复制相同的神经分类器。基于CUDA的框架用于实现这些神经网络。简化了经过训练的体系结构的流程,以实时执行车牌识别。结果表明,通过简化训练后的架构流程,可以在移动平台上实时执行车牌和字符检测与定位任务。但是,简化架构的准确性将相应降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号